A Case Study for Learning from Imbalanced Data Sets

نویسندگان

  • Aijun An
  • Nick Cercone
  • Xiangji Huang
چکیده

We present our experience in applying a rule induction technique to an extremely imbalanced pharmaceutical data set. We focus on using a variety of performance measures to evaluate a number of rule quality measures. We also investigate whether simply changing the distribution skew in the training data can improve predictive performance. Finally, we propose a method for adjusting the learning algorithm for learning in an extremely imbalanced environment. Our experimental results show that this adjustment improves predictive performance for rule quality formulas in which rule coverage makes positive contributions to the rule quality value.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Mining Fuzzy Classification Rules for Imbalanced Data

Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...

متن کامل

On Mining Fuzzy Classification Rules for Imbalanced Data

Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...

متن کامل

Enhancing Learning from Imbalanced Classes via Data Preprocessing: A Data-Driven Application in Metabolomics Data Mining

This paper presents a data mining application in metabolomics. It aims at building an enhanced machine learning classifier that can be used for diagnosing cachexia syndrome and identifying its involved biomarkers. To achieve this goal, a data-driven analysis is carried out using a public dataset consisting of 1H-NMR metabolite profile. This dataset suffers from the problem of imbalanced classes...

متن کامل

Addressing data complexity for imbalanced data sets: analysis of SMOTE-based oversampling and evolutionary undersampling

In the classification framework there are problems in which the number of examples per class is not equitably distributed, formerly known as imbalanced data sets. This situation is a handicap when trying to identify the minority classes, as the learning algorithms are not usually adapted to such characteristics. An usual approach to deal with the problem of imbalanced data sets is the use of a ...

متن کامل

A Study on the Use of the Fuzzy Reasoning Method Based on the Winning Rule vs. Voting Procedure for Classification with Imbalanced Data Sets

In this contribution we carry out an analysis of the Fuzzy Reasoning Methods for Fuzzy Rule Based Classification Systems in the framework of balanced and imbalanced data-sets with different degrees of imbalance. We analyze the behaviour of the Fuzzy Rule Based Classification Systems searching for the best type of Fuzzy Reasoning Method in each case, also studying the cooperation of some pre-pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001